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Pure Mg has low ductility due to strong plastic anisotropy and due to a transition of <c+a> pyramidal dislocations to a sessile basal-
oriented structure [1].  Alloying generally improves ductility; for instance, Mg-3wt.%RE (RE=Y, Tb, Dy, Ho, Er) alloys show 
relatively high ductility [2], and typically larger than most commercial Mg-Al-Zn alloys at similar grain sizes.  Possible concepts 
for ductility in alloys include the reduction of plastic anisotropy due to solute strengthening of basal slip, the nucleation of <c+a> 
from basal I1 stacking faults, the prevention of the detrimental <c+a> transformation to sessile structures, and the weakening of 
strong basal texture by some solute/particle mechanisms.  Experiments and modeling do not strongly support these concepts, 
however.  Here, we introduce a new mechanism of pyramidal cross-slip from the lower-energy Pyr. II plane to the higher energy 
Pyr. I plane as the key to ductility in Mg and alloys [3].  Certain alloying elements reduce the energy difference between Pyr. I and 
II screw dislocations, accelerating cross-slip that then leads to rapid dislocation multiplication and alleviates the effects of the 
undesirable pyramidal-to-basal dissociation.  A theory for the cross-slip energy barrier is presented, and first-principles density 
functional theory (DFT) calculations, following methods in [4], are used to compute the necessary pyramidal stacking fault energies 
as a function of solute type for many solutes in the dilute concentration limit.  Predictions of the theory then demonstrate why Rare 
Earth solutes are highly effective at very low concentrations, and generally capture the trends in ductility and texture evolution 
across the full range of Mg alloys studied to date.  The new mechanism is used to guide alloy design for achieving enhanced 
ductility across a range of non-RE alloys [5]. 
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