
More Information:
engineering.jhu.edu/case/events

Abstract
Neural operators are emerging as powerful tools for learning mappings between infinite-dimensional function spaces, 
offering a paradigm shift in modeling complex physical systems. Unlike traditional machine learning models, neural 
operators are discretization-invariant and can generalize across domains with varying geometries and resolutions. 
Among these, Deep Operator Network (DeepONet) has gained significant attention due to its architectural flexibility 
and has established itself as one of the foundational architectures, capable of approximating nonlinear operators 
with theoretical guarantees and strong empirical performance. DeepONet employs a dual-network design, branch and 
trunk networks, to encode input functions and spatial coordinates, respectively, enabling the learning of rich solution 
manifolds across diverse partial differential equations (PDEs). Complementing DeepONet, architectures like Fourier 
Neural Operator (FNO), Wavelet Neural Operator and Laplace Neural Operator leverage integral kernel parameterizations, 
spectral convolutions, and multi-scale structures to further enhance efficiency and generalizability. These models not 
only achieve orders-of-magnitude speedups over traditional solvers but also exhibit superior extrapolation in space 
and time, making them particularly suitable for solving forward and inverse problems in computational physics, fluid 
dynamics, and materials science. We propose that such models, especially when trained on diverse families of PDEs and 
physical systems, can serve as foundation models for scientific computing: pre-trained, adaptable, and generalizable 
across tasks, boundary conditions, and discretization. The composability, differentiability, and resolution-agnostic 
nature of neural operators position them at the frontier of next-generation scientific machine learning. This presentation 
will synthesize recent developments in operator learning, architecture design, and cross-domain applications, illustrating 
how neural operators can underpin foundation-scale models that accelerate discovery and decision-making in complex 
physical systems. 
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